JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Laxity Profiles in the Native and Replaced Knee-Application to Robotic-Assisted Gap-Balancing Total Knee Arthroplasty.

BACKGROUND: The traditional goal of the gap-balancing method in total knee arthroplasty is to create equal and symmetric knee laxity throughout the arc of flexion. The purpose of this study was to (1) quantify the laxity in the native and the replaced knee throughout the range of flexion in gap-balancing total knee arthroplasty (TKA) and (2) quantify the precision in achieving a targeted gap profile throughout flexion using a robotic-assisted technique with active ligament tensioning.

METHODS: Robotic-assisted, gap-balancing TKA was performed in 14 cadaver specimens. The proximal tibia was resected, and the native tibiofemoral gaps were measured using a robotic tensioner that dynamically tensioned the soft-tissue envelope throughout the arc of flexion. The femoral implant was then aligned to balance the gaps at 0° and 90° of flexion. The postoperative gaps were then measured during final trialing with the robotic tensioner and compared with the planned gaps.

RESULTS: The native gaps increased by 3.4 ± 1.7 mm medially and 3.7 ± 2.1 mm laterally from full extension to 20° of flexion (P < .001) and then remained consistent through the remaining arc of flexion. Gap balancing after TKA produced equal gaps at 0° and 90° of flexion, but the gap laxity in midflexion was 2-4 mm greater than at 0° and 90° (P < .001). The root mean square error between the planned gaps and actual measured postoperative gaps was 1.6 mm medially and 1.7 mm laterally throughout the range of motion.

CONCLUSION: Aiming for equal gaps at 0° and 90° of flexion produced equal gaps in extension and flexion with larger gaps in midflexion. Consistent soft-tissue balance to a planned gap profile could be achieved by using controlled ligament tensioning in robotic-assisted TKA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app