Add like
Add dislike
Add to saved papers

Induction of REDD1 via AP-1 prevents oxidative stress-mediated injury in hepatocytes.

Regulated in development and DNA damage responses 1 (REDD1) is an inducible gene in response to various stresses, which functions as a negative regulator of the mammalian target of rapamycin protein kinase in complex 1. In the present study, we identified the role of REDD1 under the oxidative stress-mediated hepatocyte injury and its regulatory mechanism. REDD1 protein was increased in H2 O2 or tert-butylhydroperoxide (t-BHP)-treated hepatocytes· H2 O2 also elevated REDD1 mRNA levels. This event was inhibited by antioxidants such as diphenyleneiodonium chloride, N-acetyl-L-cysteine, or butylated hydroxy anisole. Interestingly, we found that H2 O2 -mediated REDD1 induction was transcriptionally regulated by activator protein-1 (AP-1), and that overexpression of c-Jun increased REDD1 protein levels and REDD1 promoter-driven luciferase activity. Deletion of the putative AP-1 binding site in proximal region of the human REDD1 promoter significantly abolished REDD1 transactivation by c-Jun. A NF-E2-related factor 2 activator, tert-butylhydroquinone treatment also elevated REDD1 levels, but it was independent on NF-E2-related factor 2 activation. Furthermore, we observed that REDD1 overexpression attenuated H2 O2 or t-BHP-derived reactive oxygen species formation as well as cytotoxicity. Conversely, siRNA against REDD1 aggravated t-BHP-induced reactive oxygen species generation and cell death. In addition, we showed that REDD1 was induced by in vitro or in vivo ischemia/reperfusion model. Our results demonstrate that REDD1 induction by oxidative stress is mainly transcriptionally regulated by AP-1, and protects oxidative stress-mediated hepatocyte injury. These findings suggest REDD1 as a novel molecule that reduced susceptibility to oxidant-induced liver injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app