Add like
Add dislike
Add to saved papers

A novel amplified electrochemiluminescence biosensor based on Au NPs@PDA@CuInZnS QDs nanocomposites for ultrasensitive detection of p53 gene.

In this work, a novel surface plasmon resonance (SPR) enhanced electrochemiluminescence (ECL) biosensing model was first designed based on Au NPs@polydopamine (PDA)@CuInZnS QDs nanocomposite. Au NPs were coated with the PDA layer via the electrostatic force. CuInZnS QDs were bound on the surface of Au NPs@PDA nanocomposite. CuInZnS QDs worked as ECL luminophore in the sensing application. PDA shell not only controlled the separation length between Au NPs and QDs to induce SPR enhanced ECL response, but also limited the potential charge transfer and ECL quenching effect. As a result, the nanocomposite ECL intensity was twice that of QDs with K2 S2 O8 . The tumor suppressor p53 gene was detected in the amplified ECL sensing system. The sensing method has a linear response in the range of 0.1 nmol/L to 15 nmol/L with a detection limit of 0.03 nmol/L. The DNA biosensor based on the nanocomposite showed excellent sensitivity, selectivity, reproducibility and stability and was applied in spiked human serum samples with satisfactory results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app