Add like
Add dislike
Add to saved papers

Behavior of N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) in biosolids amended soil-plant microcosms of seven plant species: Accumulation and degradation.

Perfluorooctane sulfonate (PFOS) precursors have been found extensively in sewage sludge and biosolids-amended soils. The degradation of these precursors are regarded as a significant source of PFOS in the environment. In this study, the accumulation of N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) in the plants of seven species, namely alfalfa, lettuce, maize, mung bean, radish, ryegrass, and soybean from biosolids-amended soil, and the degradation kinetics of N-EtFOSAA in soil-plant microcosms were evaluated over 60 days. N-EtFOSAA was found in the roots of all plant species, while was not in stems and leaves. The root concentration factors of N-EtFOSAA ranged 0.52-1.37 (pmol/groot )/(pmol/gsoil ). Stepwise multiple regression analysis was used to elucidate the accumulation of N-EtFOSAA in the roots of plants. The results showed that the root protein and lipid contents explain 85.0% of the variation in root N-EtFOSAA levels (P < 0.05). Four degradation products, including N-ethyl perfluorooctane sulfonamide (N-EtFOSA), perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (FOSA) and PFOS were found in soils and plant roots, stems and leaves, indicating the degradation of N-EtFOSAA in soil-plant system. Degradation kinetics fitted a first-order kinetic model well. Degradation rate constants of N-EtFOSAA in the microcosms with plants ranged 0.063-0.165 d-1 , which was 1.40-3.6 times higher than those without plants. Degradation rate constant of maize was relatively higher than those of other plant species. The results is the first to reveal N-EtFOSAA accumulation in plants and degradation in soil-plant microcosms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app