Add like
Add dislike
Add to saved papers

Study of the influence of the supersaturation coefficient on scaling rate using the pre-calcified surface of a quartz crystal microbalance.

Water Research 2018 October 2
Scale deposition is a common issue in industrial plants, which creates technical problems, i.e. reduction of heat transfer, decrease of flow rate due to an obstruction of pipes. Therefore, the development of some appropriate methods based on well suitable in situ sensors to evaluate and predict the scaling propensity of water is a major concern in current research. This would be a good strategy for the optimization of anti-scaling treatments. In this study, scaling tests were carried out using a sensitive sensor, which has been developed using a quartz crystal microbalance with a pre-calcified electrode surface (SQCM). This technique allowed studying the influence of the supersaturation on the scaling rate. The set-up was tested with different water samples which were brought to a given supersaturation coefficient by degassing the dissolved CO2 . The prediction of the scaling propensity of water was then possible through the relationship between the scaling rate on a pre-calcified surface and the supersaturation coefficient. In addition, the kinetics of CaCO3 deposit on the pre-calcified SQCM surface was found to be slower for natural water than for synthetic water (same calcium concentration). Furthermore, the activation energy for scale deposit, in synthetic water, was found to be 22 kJ.mol-1 , which may be related to the diffusion of ions and/or CaCO3 nuclei in solution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app