Add like
Add dislike
Add to saved papers

Targeting RNA polymerase I transcription machinery in cancer cells by a novel monofunctional platinum-based agent.

Aberrant ribosome biogenesis and enlarged nucleoli have long been used by pathologists as a marker of aggressive tumors. Suppression of RNA polymerase I (Pol I) transcription machinery within the nucleolus could be a direct way to trigger the nucleolar stress and to inhibit the rapid proliferation of cancer cells. Here we modified cisplatin with an analogue of the selective inhibitor of RNA polymerase I-mediated transcription BMH-21 to develop a novel platinum-based Pol I selective inhibitor. We show that this novel monofunctional platinum-based agent, P1-B1, had enhanced antitumor activity of up to 17-fold greater than the clinical drug cisplatin in cisplatin-resistant non-small cell lung cancer cells. P1-B1 also had significantly lower cytotoxicity compared to cisplatin as well as the Pol I selective inhibitor BMH-21 in MRC-5 normal lung fibroblast cells, and the selectivity index (SI) greatly increases. Mechanistic investigations revealed that P1-B1 displayed significant nucleolar accumulation, selectively inhibited Pol I transcription, and induced nucleolar stress, leading to S-phase arrest and apoptosis. Our results suggest that the effects of P1-B1 are mechanistically distinct from those of conventional platinum agents and the recently described non-classical platinum compounds and that functionalizing platinum-based agents with directly Pol I transcription inhibition properties may represent an improved modality for cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app