Add like
Add dislike
Add to saved papers

TLS dependent and independent functions of DNA polymerase eta (Polη/Rad30) from Pathogenic Yeast Candida albicans.

Polη, a unique TLS DNA polymerase that promotes efficient bypass of UV-induced CPDs and cisplatin adducts, has not been explored in Candida species yet. Here, we show that CaPolη plays a vital role in protecting Candida albicans genome from diverse array of DNA damaging agents, not limited to UV and cisplatin. Polη deficient strain did not exhibit any hyphal development in the presence of UV and cisplatin while the wild type strain profusely developed DNA damage induced filamentation. The polarized growth induced by HU and MMS was found to be Polη independent. No common regulatory pathway of morphogenesis operates in C. albicans due to genomic stress, rather Polη branches away from RAD53 dependent pathway to be specific to UV/cisplatin. Interestingly, serum that does not inflict any DNA damage also induces hyphal growth in C. albicans, and requires a functionally active Polη. Importantly, deletion of RAD30 sensitized the strain to amphotericin B; but its presence resulted in azole drug tolerance only in DNA damaging conditions. We suggest that the roles of CaPolη in genome stability and genotoxins induced filamentation are due to its TLS activities; whereas its TLS independent functions play a vital role in serum induced morphogenesis and amphotericin B resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app