Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression of atresia biomarkers in granulosa cells after ovarian stimulation in heifers.

Reproduction 2018 September
The use of younger gamete donors in dairy cattle genetic selection programs significantly accelerates genetic gains by decreasing the interval between generations. Ovarian stimulation (OS) and the practice of follicle-stimulating hormone (FSH) withdrawal, also known as coasting, are intensively used in pre-pubertal heifers without detrimental effects on subsequent reproductive performance but generally with lower embryo yields. However, recent data from embryo transfer programs showed similar embryo yields in younger and sexually mature animals but with a significant difference in the coasting period. The aim of the present study was to identify a set of granulosa cell biomarkers capable of distinguishing optimal follicle differentiation from late differentiation and atresia in order to assess the differences in coasting dynamics between pre- and post-pubertal donors. We integrated transcriptomic data sets from a public depository and used vote counting meta-analysis in order to elucidate the molecular changes occurring in granulosa cells during late follicle differentiation and atresia. The meta-analysis revealed the gene expression associated with follicle demise, and most importantly, identified potential biomarkers of that status in bovine granulosa cells. The comparison of the expression of six biomarkers between pre- and post-pubertal donors revealed that younger donors had more signs of atresia after the same period of coasting. We found different follicular dynamics following coasting in younger donors. It is possible that younger donors are less capable to sustain follicular survival most likely due to insufficient luteinizing hormone signaling. In summary, the pre-pubertal status influences follicular dynamics and reduces the oocyte developmental competence curve following OS and FSH withdrawal in heifers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app