Add like
Add dislike
Add to saved papers

Novel transcription factors PvBMY1 and PvBMY3 increase biomass yield in greenhouse-grown switchgrass (Panicum virgatum L.).

Increasing crop yield requires the coordination of multiple metabolic pathways spanning photosynthetic carbon fixation, central carbon metabolism, and finally targeted carbon deposition to end product. In this study, we used a transcriptome-based gene regulatory association network to search for transcription factor genes that could play a role in increasing carbon flow through pathways associated with these processes to increase biomass yield in switchgrass. Two novel switchgrass transcription factors, PvBMY1 (BioMass Yield 1, belonging to the APETALA2/Ethylene Response Factor family of transcription factors) and PvBMY3 (BioMass Yield 3, a member of the Nuclear-Factor Y family of transcription factors), with predicted roles in the regulation of photosynthesis and related metabolism were identified. These genes were overexpressed in switchgrass to determine their impact on biomass yield. A significant increase in both aboveground and root biomass was observed in transgenic greenhouse grown plants compared to wild-type control plants with the best line producing 160% more aboveground biomass than controls. Transgenic lines with elevated electron transport rate of photosystems I and II as well as increased levels of starch and soluble sugars were identified.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app