Add like
Add dislike
Add to saved papers

Transient dynamics of electric double-layer capacitors: Exact expressions within the Debye-Falkenhagen approximation.

We revisit a classical problem of theoretical electrochemistry: the response of an electric double-layer capacitor (EDLC) subject to a small, suddenly applied external potential. We solve the Debye-Falkenhagen equation to obtain exact expressions for key EDLC quantities: the ionic charge density, the ionic current density, and the electric field. In contrast to earlier works, our results are not restricted to the long-time asymptotics of those quantities. The solutions take the form of infinite sums whose successive terms all decay exponentially with increasingly short relaxation times. Importantly, this set of relaxation times is the same among all aforementioned EDLC quantities; this property is demanded on physical grounds but not generally achieved within approximation schemes. The scaling of the largest relaxation timescale τ_{1}, that determines the long-time decay, is in accordance with earlier results: Depending on the Debye length, λ_{D}, and the electrode separation, 2L, it amounts to τ_{1}≃λ_{D}L/D for L≫λ_{D} and τ_{1}≃4L^{2}/(π^{2}D) for L≪λ_{D}, respectively (with D being the ionic diffusivity).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app