Add like
Add dislike
Add to saved papers

Chitosugar translocation by an unexpressed monomeric protein channel.

The outer membrane protein channel EcChiP, associated with a silent gene in E. coli, is a monomeric chitoporin. In a glucose-deficient environment, E. coli can express the ChiP gene to exploit chitin degradation products. Single-channel small ion current measurements, which reveal the dynamics of single sugar molecules trapped in channel, are used here to study the exotic transport of chitosugars by E. coli. Molecules escape from the channel on multiple timescales. Voltage-dependent trapping rates observed for charged chitosan molecules, as well as model calculations, indicate that the rapid escape processes are those in which the molecule escapes back to the side of the membrane from which it originated. The probability that a sugar molecule is translocated through the membrane is thus estimated from the current data and the dependence of this translocation probability on the length of the chitosugar molecule and the applied voltage analyzed. The described method for obtaining the translocation probability and related molecular translocation current is applicable to other transport channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app