Add like
Add dislike
Add to saved papers

Overexpression of AdeABC efflux pump associated with tigecycline resistance in clinical Acinetobacter nosocomialis isolates.

OBJECTIVES: Tigecycline non-susceptible Acinetobacter nosocomialis (TNAN) has been discovered in clinical isolates. The resistance-nodulation-cell division (RND)-type efflux system plays a major role in tigecycline non-susceptible Acinetobacter baumannii, but the mechanism in A. nosocomialis remains unknown. Our aim was to analyse the contribution of efflux-based tigecycline resistance in clinical A. nosocomialis isolates collected from multiple medical centres in Taiwan.

METHODS: A total of 57 A. nosocomialis isolates, including 46 TNAN and 11 tigecycline-susceptible A. nosocomialis (TSAN) isolates, were analysed. Of these, 46 TNAN isolates were clustered to ST410 (43 isolates) and ST68 (three isolates) by multi-locus sequence typing.

RESULTS: The relationship between the RND efflux pump and tigecycline resistance was indirectly verified by successfully reducing tigecycline resistance with NMP, an efflux pump inhibitor. The three RND efflux systems (AdeABC, AdeIJK and AdeFGH) were detected in all clinical isolates. The transcript level of adeB gene increased significantly and was correlated with tigecycline resistance. Moreover, the AdeRS two-component system was further classified into four different types of AdeRS patterns considering the amino acid sequence. Further analysis showed that tigecycline resistance was related to the transcript level of adeB gene and the AdeRS pattern.

CONCLUSION: This study showed that the dissemination of TNAN isolates in Taiwan is attributable mainly to the spread of ST410. The AdeABC efflux pump appeared to play an important role in the tigecycline resistance of A. nosocomialis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app