Add like
Add dislike
Add to saved papers

Intracellular Biodegradation of Ag Nanoparticles, Storage in Ferritin, and Protection by a Au Shell for Enhanced Photothermal Therapy.

ACS Nano 2018 July 25
Despite their highly efficient plasmonic properties, gold nanoparticles are currently preferred to silver nanoparticles for biomedical applications such as photothermal therapy due to their high chemical stability in the biological environment. To confer protection while preserving their plasmonic properties, we allied the advantages of both materials and produced hybrid nanoparticles made of an anisotropic silver nanoplate core coated with a frame of gold. The efficiency of these hybrid nanoparticles (Ag@AuNPs) in photothermia was compared to monometallic silver nanoplates (AgNPs) or gold nanostars (AuNPs). The structural and functional properties of AuNPs, AgNPs, and Ag@AuNPs were investigated in environments of increasing complexity, in water suspensions, in cells, and in tumors in vivo. While AgNPs showed the greatest heating efficiency in suspension (followed by Ag@AuNPs and AuNPs), this trend was reversed intracellularly within a tissue-mimetic model. In this setup, AgNPs failed to provide consistent photothermal conversion over time, due to structural damage induced by the intracellular environment. Remarkably, the degraded Ag was found to be stored within the iron-storage ferritin protein. By contrast, the Au shell provided the Ag@AuNPs with total Ag biopersistence. As a result, photothermal therapy was successful with Ag@AuNPs in vivo in a mouse tumor model, providing the ultimate proof on Au shell's capability to shield the Ag core from the harsh biological environment and preserve its excellent heating properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app