Add like
Add dislike
Add to saved papers

Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror.

Optics Letters 2018 June 16
The generation of high-power ultrashort pulses from a passively mode-locked fiber laser is reported based on the combination of a single-polarization large-mode-area (LMA) photonic crystal fiber with a nonlinear amplifying loop mirror design. The introduction of a non-reciprocal phase shift in the loop mirror enables self-starting of the mode-locked laser, while the polarizing LMA fiber supports environmentally stable high-power operation. Mode locking in the soliton-like, stretched-pulse, and all-normal-dispersion regime is characterized. The laser generates stable pulses with up to 2 W average power at a 72 MHz repetition rate, corresponding to a single-pulse energy of 28 nJ. The output pulses are dechirped to a near transform-limited duration of 152 fs. The proposed fiber oscillator presents an alternative approach to high-power ultrafast laser sources, along with environmental stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app