Add like
Add dislike
Add to saved papers

Differential Response of Wheat Cultivars to Pseudomonas brassicacearum and Take-All Decline Soil.

Phytopathology 2018 December
2,4-Diacetylphloroglucinol (DAPG)-producing Pseudomonas spp. in the P. fluorescens complex are primarily responsible for a natural suppression of take-all of wheat known as take-all decline (TAD) in many fields in the United States. P. brassicacearum, the most common DAPG producer found in TAD soils in the Pacific Northwest (PNW) of the United States, has biological control, growth promoting and phytotoxic activities. In this study, we explored how the wheat cultivar affects the level of take-all suppression when grown in a TAD soil, and how cultivars respond to colonization by P. brassicacearum. Three cultivars (Tara, Finley, and Buchanan) supported similar rhizosphere population sizes of P. brassicacearum when grown in a TAD soil, however they developed significantly different amounts of take-all. Cultivars Tara and Buchanan developed the least and most take-all, respectively, and Finley showed an intermediate amount of disease. However, when grown in TAD soil that was pasteurized to eliminate both DAPG producers and take-all suppression, all three cultivars were equally susceptible to take-all. The three cultivars also responded differently to the colonization and phytotoxicity of P. brassicacearum strains Q8r1-96 and L5.1-96, which are characteristic of DAPG producers in PNW TAD soils. Compared with cultivar Tara, cultivar Buchanan showed significantly reduced seedling emergence and root growth when colonized by P. brassicacearum, and the response of Finley was intermediate. However, all cultivars emerged equally when treated with a DAPG-deficient mutant of Q8r1-96. Our results indicate that wheat cultivars grown in a TAD soil modulate both the robustness of take-all suppression and the potential phytotoxicity of the antibiotic DAPG.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app