Add like
Add dislike
Add to saved papers

Pyrophosphate-Induced Intramolecular Excimer Formation in Dinuclear Zinc(II) Complexes with Tetrakisquinoline Ligands.

Dinuclear Zn2+ complexes with HTQHPN ( N,N,N' ,N'-tetrakis(2-quinolylmethyl)-2-hydroxy-1,3-propanediamine) derivatives have been prepared, and their pyrophosphate (PPi, P2 O7 4- ) sensing properties were examined. The ligand library includes six HTQHPN derivatives with electron-donating/withdrawing substituents, an extended aromatic ring, and six-membered chelates upon zinc binding. Complexation of ligand with 2 equiv of Zn2+ promotes small to moderate fluorescence enhancement around 380 nm, but in the cases of HTQHPN, HT(6-FQ)HPN ( N,N,N' ,N'-tetrakis(6-fluoro-2-quinolylmethyl)-2-hydroxy-1,3-propanediamine), and HT(8Q)HPN ( N,N,N' ,N'-tetrakis(8-quinolylmethyl)-2-hydroxy-1,3-propanediamine), subsequent addition of PPi induced a significant fluorescence increase around 450 nm. This fluorescence enhancement in the long-wavelength region is attributed to the conformational change of the bis-(quinolylmethyl)amine moiety which promotes intramolecular excimer formation between adjacent quinolines upon binding with PPi. The structures of PPi- and phosphate-bound dizinc complexes were revealed by X-ray crystallography utilizing phenyl-substituted analogues. The zinc complex with HT(8Q)HPN exhibits the highest signal enhancement ( IPPi / I0 = 12.5) and selectivity toward PPi sensing ( IATP / IPPi = 20% and IADP / IPPi = 25%). The fluorescence enhancement turned to decrease gradually after the addition of more than 1 equiv of PPi due to the removal of zinc ion from the ligand-zinc-PPi ternary complex, allowing the accurate determination of PPi concentrations at the fluorescence maximum composition. The practical application of the present method was demonstrated monitoring the enzymatic activity of pyrophosphatase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app