Add like
Add dislike
Add to saved papers

Vibrational quantum graphs and their application to the quantum dynamics of CH 5 .

The first application of quantum graphs to the vibrational quantum dynamics of molecules is reported. The quantum-graph model is applied to the quasistructural molecular ion CH5+, whose nuclear dynamics challenges the traditional understanding of chemical structures and molecular spectra. The vertices of the quantum graph represent versions of the equilibrium structure with distinct atom numbering, while the edges refer to collective nuclear motions transforming the versions of the equilibrium structure into one another. These definitions allow the mapping of the complex vibrational quantum dynamics of CH5+ onto the motion of a particle confined in a quantum graph. The quantum-graph model provides a simple understanding of the low-energy vibrational quantum dynamics of CH5+ and is able to reproduce the low-lying vibrational energy levels of CH5+ (and CD5+) with remarkable accuracy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app