JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Caliceal Fluid Temperature During High-Power Holmium Laser Lithotripsy in an In Vivo Porcine Model.

INTRODUCTION: With increasing use of high-power laser settings for lithotripsy, the potential exists to induce thermal tissue damage. In vitro studies have demonstrated that temperature elevation sufficient to cause thermal tissue damage can occur with certain laser and irrigation settings. The objective of this pilot study was to measure caliceal fluid temperature during high-power laser lithotripsy in an in vivo porcine model.

METHODS: Four female pigs (30-35 kg) were placed under general anesthesia and positioned supine. Retrograde ureteroscopy with entry into upper or middle calices was performed. Thermocouples were placed into the calix by open exposure and puncture of the kidney or retrograde alongside the ureteroscope. A 242 μm laser fiber was positioned in the center of the calix and activated (0.5 J, 80 Hz, 40 W) for 60 seconds with high, medium, or no irrigation delivered in each trial. Finite element simulations of laser-induced heating in a renal calix were also performed.

RESULTS: Peak temperatures of 84.8°C, 63.9°C, and 43.6°C were recorded for no, medium, and high irrigation, respectively. Mean time to reach threshold of thermal injury (t43 of 120 minutes) was 12.7 and 17.8 seconds for no and medium irrigation. Thermal damage thresholds were not reached in high-irrigation trials. Numerical simulations revealed similar results with peak spatial average fluid temperatures of >100°C, 58.5°C, and 37.5°C during 60 seconds of laser activation for 0.1, 15, and 40 mL/minute irrigation, respectively.

CONCLUSIONS: High-power holmium laser settings (40 W) can induce potentially injurious temperatures in the porcine in vivo model, particularly with slower irrigation rates. Characterization of thermal dose across a broader range of laser parameter settings is underway to map out the thermal safety envelope.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app