Add like
Add dislike
Add to saved papers

Large trees are surrounded by more heterospecific neighboring trees in Korean pine broad-leaved natural forests.

Scientific Reports 2018 June 15
Negative conspecific density dependence is one of the principal mechanisms affecting plant performance and community spatial patterns. Although many studies identified the prevalence of density dependent effects in various vegetation types by analyzing conspecific spatial dispersal patterns (spatial patterning) of forest trees, interactions between individuals and heterospecific neighboring trees caused by density-dependent effects are often neglected. The effects of negative density dependence lead us to expect that neighbourhood species segregation would increase with increasing tree size and that larger trees would be surrounded by more heterospecific neighbours than would smaller trees. We studied four mapped 1-Ha plots on Changbaishan Mountain in North-eastern China and used marked point pattern analysis to explore whether trees of different sizes exhibited differences in neighbourhood species segregation; we also determined whether larger trees were more likely to have heterospecific neighbours than smaller trees were. Our results show that bigger trees generally have higher species mingling levels. Neighborhood species segregation ranged from lower than expected levels to random or nearly random patterns at small scales as tree size classes increased under heterogeneous Poisson null model tests. This study provides some evidence in support of negative density dependent effects in temperate forests.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app