Add like
Add dislike
Add to saved papers

Central administration of TRV027 improves baroreflex sensitivity and vascular reactivity in spontaneously hypertensive rats.

TRV027 is a biased agonist for the Angiotensin (Ang)-II type 1 receptor (AT1 R), able to recruit β-arrestin 2 independently of G-proteins activation. β-arrestin activation in the central nervous system (CNS) was suggested to oppose the effects of Ang-II. The present study evaluates the effect of central infusion of TRV027 on arterial pressure (AP), autonomic function, baroreflex sensitivity (BRS), and peripheral vascular reactivity. Spontaneously hypertensive (SH) and Wistar Kyoto (WKY) rats were treated with TRV027 for 14 days (20 ng/h) delivered to the lateral ventricle via osmotic minipumps. Mechanistic studies were performed in HEK293T cells co-transfected with AT1 R and Ang converting enzyme type 2 (ACE2) treated with TRV027 (100 nM) or Ang-II (100 nM). TRV027 infusion in SH rats (SHR) reduced AP (~20 mmHg, P <0.05), sympathetic vasomotor activity (ΔMAP = -47.2 ± 2.8 compared with -64 ± 5.1 mmHg, P <0.05) and low-frequency (LF) oscillations of AP (1.7 ± 0.2 compared with 5.8 ± 0.4 mmHg, P <0.05) compared with the SHR control group. TRV027 also increased vagal tone, improved BRS, reduced the reactivity of mesenteric arteries to Ang-II and increased vascular sensitivity to phenylephrine (Phe), acetylcholine, (ACh), and sodium nitroprusside (SNP). In vitro , TRV027 prevented the Ang-II-induced up-regulation of ADAM17 and in contrast with Ang-II, had no effects on ACE2 activity and expression levels. Furthermore, TRV027 induced lesser interactions between AT1 R and ACE2 compared with Ang-II. Together, these data suggest that due to its biased activity for the β-arrestin pathway, TRV027 has beneficial effects within the CNS on hypertension, autonomic and vascular function, possibly through preserving ACE2 compensatory activity in neurones.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app