Add like
Add dislike
Add to saved papers

Calcitriol Accelerates Vascular Calcification Irrespective of Vitamin K Status in a Rat Model of Chronic Kidney Disease with Hyperphosphatemia and Secondary Hyperparathyroidism.

Patients with chronic kidney disease (CKD) have a markedly increased risk for developing cardiovascular disease. Nontraditional risk factors, such as increased phosphate retention, increased serum fibroblast growth factor 23 (FGF-23), and deficiencies in vitamins D and K metabolism, likely play key roles in the development of vascular calcification during CKD progression. Calcitriol [1,25-(OH)2 -D3 ] is a key transcriptional regulator of matrix Gla protein, a vitamin K-dependent protein that inhibits vascular calcification. We hypothesized that calcitriol treatment would inhibit the development of vascular calcification and this inhibition would be dependent on vitamin K status in a rat model of CKD. Rats were treated with dietary adenine (0.25%) to induce CKD, with either 0, 20, or 80 ng/kg of calcitriol with low or high dietary vitamin K1 (0.2 or 100 mg/kg) for 7 weeks. Calcitriol at both lower (20 ng/kg) and moderate (80 ng/kg) doses increased the severity of vascular calcification, and contrary to our hypothesis this was not significantly improved by high dietary vitamin K1. Calcitriol had a dose-dependent effect on: 1) lowering serum parathyroid hormone, 2) increasing serum calcium, and 3) increasing serum FGF-23. Calcitriol treatment significantly increased aortic expression of the calcification genes Runx2 and Pit-1 These data also implicate impaired vitamin D catabolism in CKD, which may contribute to the development of calcitriol toxicity and increased vascular calcification. The present findings demonstrate that in an adenine-induced rat model of CKD calcitriol treatment at doses as low as 20 ng/kg can increase the severity of vascular calcification regardless of vitamin K status.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app