Add like
Add dislike
Add to saved papers

Adaption of a parallel-path poly(tetrafluoroethylene) nebulizer to an evaporative light scattering detector: Optimization and application to studies of poly(dimethylsiloxane) oligomers as a model polymer.

The adaption of an parallel-path poly(tetrafluoroethylene)(PTFE) ICP-nebulizer to an evaporative light scattering detector (ELSD) was realized. This was done by substituting the originally installed concentric glass nebulizer of the ELSD. The performance of both nebulizers was compared regarding nebulizer temperature, evaporator temperature, flow rate of nebulizing gas and flow rate of mobile phase of different solvents using caffeine and poly(dimethylsiloxane) (PDMS) as analytes. Both nebulizers showed similar performances but for the parallel-path PTFE nebulizer the performance was considerably better at low LC flow rates and the nebulizer lifetime was substantially increased. In general, for both nebulizers the highest sensitivity was obtained by applying the lowest possible evaporator temperature in combination with the highest possible nebulizer temperature at preferably low gas flow rates. Besides the optimization of detector parameters, response factors for various PDMS oligomers were determined and the dependency of the detector signal on molar mass of the analytes was studied. The significant improvement regarding long-term stability made the modified ELSD much more robust and saved time and money by reducing the maintenance efforts. Thus, especially in polymer HPLC, associated with a complex matrix situation, the PTFE-based parallel-path nebulizer exhibits attractive characteristics for analytical studies of polymers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app