Add like
Add dislike
Add to saved papers

Highly sensitive and selective determination of Hg(II) based on microfluidic chip with on-line fluorescent derivatization.

In this study, a convenient, sensitive, rapid and simple method was developed on microfluidic chip which was integrated with on-line complexing and laser-induced fluorescence detection. A rhodamine derivative (RD) was developed as a fluorescent chemosensor for Hg(II). It exhibited high selective recognition toward Hg(II) over other examined metal ions in water samples. Under the optimized conditions, the response was linearly proportional to the concentration of Hg(II) in the range of 0-70 μM with a detection limit of 0.031 μM. Satisfactory repeatability and reproducibility were achieved, with a relative standard deviation (RSD) of 6.62%. The established method was successfully applied for the determination of Hg(II) in environmental water samples (surface water, tap water, and waste water). Recoveries obtained for the determination of Hg(II) in spiking samples ranged from 85% to 103%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app