Add like
Add dislike
Add to saved papers

Effects of the natural colloidal particles from one freshwater lake on the photochemistry reaction kinetics of ofloxacin and enrofloxacin.

Understanding the effect of natural colloidal particles (NCPs) on the photochemistry of organic pollutants is crucial to predict the environmental persistence and fate of them in surface waters, and it is, yet, scarcely elucidated. In this study, the pre-filtered surface water (through a 1 μm capsule filter) from Baiyangdian Lake was further separated into four different size NCPs: F1 (0.65-1.0 μm), F2 (100 kD-0.65 μm), F3 (10-100 kD) and F4 (1-10 kD) by cross-flow ultrafiltration (CFUF), and the photochemical kinetics and mechanisms of ofloxacin (OFL) and enrofloxacin (ENR) were investigated in the presence of those particles under simulated sunlight. Results showed that OFL and ENR underwent both direct and indirect photolysis in F1-F4 solutions, and the observed pseudo first-order rate constants (kobs ) for target compounds differed depending on the size of NCPs. Direct photolysis accounted for >50% of the degradation in all cases and was the dominant degradation pathway for the two target antibiotics with the exception of OFL in F1 solution. Except for ENR in both F3 and F4 solutions, nearly all NCPs enhanced the degradation of both target compounds by indirect photolytic pathways, especially in F1 solution that showed the largest reactivity for OFL and ENR, promoting the reactions by 63% and 41%, respectively. The excited state colloidal organic matter (3 COM∗ ) plays a significant role in the indirect photolysis, and the adsorptions of OFL and ENR to NCPs were likely to have a pronounced effect in the photochemistry process. Pearson's correlations analysis showed that the kobs(OFL) was significant positive correlated with binding of Fe (r = 0.963, P < 0.05), and the kobs(ENR) was significant positive correlated with the adsorption percentage of OFL (r = 0.999, P < 0.01). This paper has demonstrated that different size NCPs showed the different photochemical contribution to the reaction rate for OFL and ENR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app