Journal Article
Review
Add like
Add dislike
Add to saved papers

Therapeutic strategies for targeting neurodegenerative protein misfolding disorders.

Neurodegenerative diseases can arise from a multitude of different pathological drivers, however protein misfolding appears to be a common molecular feature central to several disorders. Protein folding, and attainment of correct secondary and tertiary structure, is essential for proper protein function. Protein misfolding gives rise to structural perturbations that can result in loss of protein function or a gain of toxic function, such as through aggregation, either of which can initiate and propagate biological responses that are deleterious to cells. Several neurodegenerative diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease and Parkinson's disease, each have identified molecular components in which protein misfolding perturbs cellular systems that ultimately lead to cell death, and this predominately occurs in neurons. Current efforts focused on developing therapies for protein misfolding disorders have employed diverse strategies; inhibiting the production of disease-relevant proteins prone to misfolding, inhibiting the aggregation of misfolded proteins, removing and preventing spread of aggregated misfolded proteins and manipulating cellular systems to mitigate the toxic effects of misfolded proteins. Each of these strategies has yielded therapeutic agents that have transitioned from preclinical proof of concept studies into human clinical testing. These approaches and therapies are described herein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app