Add like
Add dislike
Add to saved papers

Machine Learning Classification Models to Improve the Docking-based Screening: A Case of PI3K-Tankyrase Inhibitors.

Molecular Informatics 2018 November
One of the major challenges in the current drug discovery is the improvement of the docking-based virtual screening performance. It is especially important in the rational design of compounds with desired polypharmacology or selectivity profiles. To address this problem, we present a methodology for the development of target-specific scoring functions possessing high screening power. These scoring functions were built using the machine learning methods for the dual target inhibitors of PI3Kα and tankyrase, promising targets for colorectal cancer therapy. The Deep Neural Network models achieve the external test AUC ROC values of 0.96 and 0.93 for the random split and 0.90 and 0.84 for the time-based split of the PI3Kα and tankyrase inhibitors, respectively. In addition, the impact of the training set size and the actives/decoys ratio on the model quality was assessed. The study demonstrates that the optimized scoring functions could significantly improve the docking screening power for each individual target. This is very useful in the design of multitarget or selective drugs wherein the screening filters are applied in sequence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app