Add like
Add dislike
Add to saved papers

PBPK Modeling Strategy for Predicting Complex Drug Interactions of Letermovir as a Perpetrator in Support of Product Labeling.

Letermovir is a human cytomegalovirus (CMV) terminase inhibitor for the prophylaxis of CMV infection in allogeneic hematopoietic stem-cell transplant (HSCT) recipients. In vitro, letermovir is a time-dependent inhibitor and an inducer of cytochrome P450 (CYP)3A, and an inhibitor of CYP2C8 and organic anion transporting polypeptide (OATP)1B. A stepwise approach was taken to qualify the interaction model of an existing letermovir physiologically based pharmacokinetic model to predict letermovir interactions with CYP3A and OATP1B. The model was then used to prospectively predict the interaction between letermovir and CYP2C8 substrates such as repaglinide, a substrate of CYP2C8, CYP3A, and OATP1B. The results showed that letermovir modestly increased the exposure of CYP2C8 substrates. These results were used to inform the US prescribing information in the absence of clinical drug-drug interaction studies. In addition, midazolam interactions with letermovir at therapeutic doses were also simulated to confirm that letermovir is a moderate CYP3A inhibitor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app