Add like
Add dislike
Add to saved papers

Reduction of graphene oxide quantum dots to enhance the yield of reactive oxygen species for photodynamic therapy.

The production of reactive oxygen species (ROS) from graphene oxide quantum dots (GOQDs) and chemically reduced GOQDs (rGOQDs) was studied. This shows that GOQDs and rGOQDs produce ROS including singlet oxygen (1O2), hydrogen peroxide (H2O2) and superoxide anion (O2˙-). Interestingly, the rGOQDs exhibit a higher yield of ROS under white light in comparison with GOQDs, indicating the enhanced photodynamic effect through chemical reduction of GOQDs. Studies on the relation between their structures and the yield of ROS demonstrate that the reduction of GOQDs with hydrazine hydrate decreases the band gap and valence band of GOQDs and results in more electron-hole pairs, which leads to an improvement in the yield of ROS from rGOQDs. This research explores the specific species of ROS generated from GOQDs, and provides an efficient avenue to improve the yield of ROS through surface modification of GOQDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app