Add like
Add dislike
Add to saved papers

Stable Metal Anode enabled by Porous Lithium Foam with Superior Ion Accessibility.

Lithium (Li) metal anodes have attracted much interest recently for high-energy battery applications. However, low coulombic efficiency, infinite volume change, and severe dendrite formation limit their reliable implementation over a wide range. Here, an outstanding stability for a Li metal anode is revealed by designing a highly porous and hollow Li foam. This unique structure is capable of tackling many Li metal problems simultaneously: first, it assures uniform electrolyte distribution over the inner and outer electrode's surface; second, it reduces the local current density by providing a larger electroactive surface area; third, it can accommodate volume expansion and dissipate heat efficiently. Moreover, the structure shows superior stability compared to fully Li covered foam with low porosity, and bulky Li foil electrode counterparts. This Li foam exhibits small overpotential (≈25 mV at 4 mA cm-2 ) and high cycling stability for 160 cycles at 4 mA cm-2 . Furthermore, when assembled, the porous Li metal as the anode with LiFePO4 as the cathode for a full cell, the battery has a high-rate performance of 138 mAh g-1 at 0.2 C. The beneficial structure of the Li hollow foam is further studied through density functional theory simulations, which confirms that the porous structure has better charge mobility and more uniform Li deposition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app