Add like
Add dislike
Add to saved papers

Structural data of DNA binding and molecular docking studies of dihydropyrimidinone transition metal complexes.

Data in Brief 2018 August
A series of some novel copper complexes derived from Biginelli condensation of DHPHS. The ligand and its transition metal complexes show more antimicrobial activities which was substantiated by molecular docking studies. Transition metal complexes four possess antioxidant properties supported by the DNA-binding, cleavage, and viscosity measurement (Prasad et al., 2011) [1]. The in Silicon DNA binding reveals copper complex is bound to be Minor groove and other manganese, cobalt, nickel complexes are bound to the Major groove portion of DNA through hydrogen bonds and hence copper (II), manganese (II), cobalt (II), nickel (II) complexes are called Minor groove and Major groove binder respectively. The DNA cleavage studies of metal complexes presented more protruding activity in the attendance of H2 O2 associated to that in the absence of H2 O2. In continuance of our ongoing research on DNA binding and cleavage happenings of transition metal complexes, in this paper we obtainable the synthesis, characterization and DNA cleavage activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app