Add like
Add dislike
Add to saved papers

Facile preparation and adsorption performance of graphene oxide-manganese oxide composite for uranium.

Scientific Reports 2018 June 14
To overcome the limits of low adsorption capacity and the separation difficulty of solid from liquid phase for graphene oxide (GO), a novel nanocomposite graphene oxide-manganese oxide (GOMO) was facilely fabricated under ultrasonic radiation. The structures and micro-morphology of the products were characterized by fourier transform infrared (FT-IR) spectroscopy, raman shift spectroscopy, X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM). The effect of solution pH, adsorbent dose, contact time, initial uranium concentration, ionic strength and temperature on uranium removal efficiency was studied by batch adsorption experiments. The product GOMO was used to examine the feasibility of the removal of high salt content in uranium-containing wastewater. The adsorption results were fitted using the Langmuir and Freundlich isotherm models. The kinetic parameters in the adsorption process were measured and fitted. Five adsorption/desorption cycles were performed using 3 M HNO3 as the regenerant in order to evaluate the reuse of GOMO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app