Add like
Add dislike
Add to saved papers

Heterozygous deletion of LRP5 gene in mice alters profile of immune cells and modulates differentiation of osteoblasts.

Bioscience Trends 2018 July 18
Skeletal homeostasis is dynamically influenced by the immune system. Low density lipoprotein receptor-related protein-5 (LRP5) is a co-receptor of the Wnt signaling pathway, which modulates bone metabolism in humans and mice. Immune disorders can lead to abnormal bone metabolism. It is unclear whether and how LRP5 alters the balance of the immune system to modulate bone homeostasis. In this study, we used primary osteoblast to detect the differentiation of osteoblasts in vitro, the immune cells of spleen and bone marrow of 6-month old LRP5 heterozygote (HZ) and wild-type (WT) mice were analyzed by Flow cytometry. We found that LRP5+/- could influence the differentiation of osteoblasts by decreasing the mRNA level of Osterix, and increasing the mRNA level of Runx2 and the ratio of receptor activator for nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG). In the LRP5+/- mice, percentages of NK cells, CD3e+ cells, and CD8a+ T cells were increased in both spleen and bone marrow, and percentages of CD106+ cells and CD11c+ cells were increased in spleen while decreased in bone marrow, conversely, CD62L+ cells were decreased in spleen while increased in bone marrow compared to the WT mice. Percentages of CD4+ cells, CD14+ cells, and CD254+ cells were increased in the spleen, and CTLA4+ cells were increased in the bone marrow of the LRP5+/- mice. The mRNA level of Wnt signaling molecules such as β-catenin, and c-myc were decreased and APC was increased in spleen lymphocytes and bone marrow lymphocytes, and the mRNA level of Wnt3a was decreased in spleen lymphocytes while no change in bone marrow lymphocytes was seen with silencing LRP5 by specific small interfering RNA. In conclusion, heterozygous deletion of the LRP5 gene in mice could alter the profile of the immune cells, influence the balance of immune environment, and modulate bone homeostasis, which might present a potential mechanism to explore the Wnt signaling pathway in the modulation of the immune system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app