Add like
Add dislike
Add to saved papers

Carbonaceous Monolithic Multi-Channel Denuders as Vapour-Particle Partitioning Tools for the Occupational Sampling of Semi-Volatile Organic Compounds.

Denuders are gas-particle partitioning tools and can be used in combination with filters and adsorbers for phase-separated collection of hazardous semi-volatile organic compound (SVOC) aerosols. Here, we investigated the suitability of carbonaceous monolithic multi-channel denuders for this approach. Particle transmission efficiency through the denuders was investigated using particles of polystyrene latex (PSL) and droplets of n-hexadecane and diethylene glycol. The time-dependent vapour collection efficiency was analysed for n-hexadecane and diethylene glycol vapours and also compared to calculated predictions. Our measurements showed an averaged transmission efficiency of 97 ± 4.4% for PSL particles with diameters of 0.51, 0.99, 1.93, and 3.00 µm. Measurements with one denuder and 1.08, 1.98, and 2.97 µm particles consisting of n-hexadecane or diethylene glycol resulted in an averaged transmission efficiency of 99 ± 6.5%. Regarding the vapour collection efficiency at a flow rate of 5 l min-1, n-hexadecane vapour could be adsorbed to a similar extent (91 ± 1.4% for one denuder, 98 ± 0.3% for two denuders) as diethylene glycol vapour (93 ± 1.8% for one denuder, 97 ± 0.9% for two denuders). The comparison between experimental and theoretical vapour collection efficiencies revealed differences around 2.8% for n-hexadecane and around 12.3% for diethylene glycol. The results show that the tested denuders can be used as vapour collection tools for SVOCs, and can be integrated in currently used personal air samplers for separated vapour and particle collection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app