Add like
Add dislike
Add to saved papers

Highly stretchable and ultrathin nanopaper composites for epidermal strain sensors.

Nanotechnology 2018 August 32
Multifunctional electronics are attracting great interest with the increasing demand and fast development of wearable electronic devices. Here, we describe an epidermal strain sensor based on an all-carbon conductive network made from multi-walled carbon nanotubes (MWCNTs) impregnated with poly(dimethyl siloxane) (PDMS) matrix through a vacuum filtration process. An ultrasonication treatment was performed to complete the penetration of PDMS resin in seconds. The entangled and overlapped MWCNT network largely enhances the electrical conductivity (1430 S m-1 ), uniformity (remaining stable on different layers), reliable sensing range (up to 80% strain), and cyclic stability of the strain sensor. The homogeneous dispersion of MWCNTs within the PDMS matrix leads to a strong interaction between the two phases and greatly improves the mechanical stability (ca. 160% strain at fracture). The flexible, reversible and ultrathin (<100 μm) film can be directly attached on human skin as epidermal strain sensors for high accuracy and real-time human motion detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app