Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Motion artifacts in standard clinical setting obscure disease-specific differences in quantitative susceptibility mapping.

As quantitative susceptibility mapping (QSM) is maturing, more clinical applications are being explored. With this comes the question whether QSM is sufficiently robust and reproducible to be directly used in a clinical setting where patients are possibly not cooperative and/or unable to suppress involuntary movements sufficiently. Twenty-nine patients with Alzheimer's disease, 31 patients with mild cognitive impairment and 41 healthy controls were scanned on a 3 T scanner, including a multi-echo gradient-echo sequence for QSM and an inversion-prepared segmented gradient-echo sequence (T1-TFE, MPRAGE). The severity of motion artifacts (excessive/strong/noticeable/invisible) was categorized via visual inspection by two independent raters. Quantitative susceptibility was reconstructed using 'joint background-field removal and segmentation-enhanced dipole inversion', based on segmented subcortical gray-matter regions, as well as using 'morphology enabled dipole inversion'. Statistical analysis of the susceptibility maps was performed per region. A large fraction of the data showed motion artifacts, visible in both magnitude images and susceptibility maps. No statistically significant susceptibility differences were found between groups including motion-affected data. Considering only subjects without visible motion, significant susceptibility differences were observed in caudate nucleus as well as in putamen. Motion-effects can obscure statistically significant differences in QSM between patients and controls. Additional measures to restrict and/or compensate for subject motion should be taken for QSM in standard clinical settings to avoid risk of false findings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app