Add like
Add dislike
Add to saved papers

Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites.

Angewandte Chemie 2018 July 21
Amorphous phosphorus nitride imide nanotubes (HPN) are reported as a novel substrate to stabilize materials containing single-metal sites. Abundant dangling unsaturated P vacancies play a role in stabilization. Ruthenium single atoms (SAs) are successfully anchored by strong coordination interactions between the d orbitals of Ru and the lone pair electrons of N located in the HPN matrix. The atomic dispersion of Ru atoms can be distinguished by X-ray absorption fine structure measurements and spherical aberration correction electron microscopy. Importantly, Ru SAs@PN is an excellent electrocatalyst for the hydrogen evolution reaction (HER) in 0.5 m H2 SO4 , delivering a low overpotential of 24 mV at 10 mA cm-2 and a Tafel slope of 38 mV dec-1 . The catalyst exhibits robust stability in a constant current test at a large current density of 162 mA cm-2 for more than 24 hours, and is operative for 5000 cycles in a cyclic voltammetry test. Additionally, Ru SAs@PN presents a turnover frequency (TOF) of 1.67 H2  s-1 at 25 mV, and 4.29 H2  s-1 at 50 mV, in 0.5 m H2 SO4 solution, outperforming most of the reported hydrogen evolution catalysts. Density functional theory (DFT) calculations further demonstrate that the Gibbs free energy of adsorbed H* over the Ru SAs on PN is much closer to zero compared with the Ru/C and Ru SAs supported on carbon and C3 N4 , thus considerably facilitating the overall HER performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app