Add like
Add dislike
Add to saved papers

Theoretical modeling of tip-enhanced resonance Raman images of switchable azobenzene molecules on Au(111).

Nanoscale 2018 July 6
With a highly localized plasmonic field, tip-enhanced Raman spectroscopy (TERS) images have reached atomic-scale resolution, providing an optical means to explore the structure of a single molecule. We have applied the recently developed theoretical method to simulate the TERS images of trans and cis azobenzene as well as its derivatives on Au(111). Our theoretical results reveal that when the first excited state is resonantly excited, TERS images from a highly confined plasmonic field can effectively distinguish the isomer configurations of the adsorbates. The decay of the plasmonic field along the surface normal can be further used to distinguish different nonplanar cis configurations. Moreover, subtle characteristics of different molecular configurations can also be identified from the TERS images of other resonant excited states with a super-high confined plasmonic field. These findings serve as good references for future TERS experiments on molecular isomers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app