Add like
Add dislike
Add to saved papers

An enzymatic system for decolorization of wastewater dyes using immobilized CueO laccase-like multicopper oxidase on poly-3-hydroxybutyrate.

The presence of synthetic dyes in wastewaters generated by the textile industry constitutes a serious environmental and health problem that urges the scientific community on an appropriate action. As a proof-of-concept, we have developed a novel approach to design enzymatic bioreactors with the ability to decolorize dye solutions through the immobilization of the bacterial CueO laccase-like multicopper oxidase from Escherichia coli on polyhydroxybutyrate (PHB) beads by making use of the BioF affinity tag. The decolorization efficiency of the system was characterized by a series of parameters, namely maximum enzyme adsorption capacity, pH profile, kinetic constants, substrate range, temperature and bioreactor recycling. Depending on the tested dye, immobilization increased the catalytic activity of CueO by up to 40-fold with respect to the soluble enzyme, reaching decolorization efficiencies of 45-90%. Our results indicate that oxidase bioreactors based on polyhydroxyalkanoates are a promising alternative for the treatment of coloured industrial wastewaters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app