Add like
Add dislike
Add to saved papers

IGF1R Gene Alterations in Small for Gestational Age (SGA) Children.

BACKGROUND: Small for gestational age children (SGA) is born on term with BW and or BL of -2.0 standard deviation score (SDS). SGA children have an increased risk of being short, developing DM, and cardiovascular and cerebrovascular disease. Often defects of IGF1R are the cause of SGA. Most frequently affected part of the IGF1R gene is the exon 2.

AIM: To investigate whether the exon 2 of the IGF1R gene is affected in the SGA children.

PATIENTS AND METHODS: A cohort of 100 SGA children born in term was evaluated for alterations in IG1R gene. Their anthropometric parameters, IGF1 serum concentrations and IGF1 SDS values were analysed. The molecular analysis of IGF1R gene was performed by PCR restriction-site analysis and followed by direct sequencing of conspicuous fragments.

RESULTS: Within our cohort, 64 SGA children were with short stature (height SDS -3.25 ± 0.90 SDS), and 36 were with normal height for their age and sex, (H SDS was 0.20 ± 1.1 SDS). None of these children had microcephaly (occipitofrontal circumference -0.70 ± 1.01 SDS vs 0.06 ± 0.56 SDS in SGA children with normal height) or dysmorphic features. The IGF1 serum concentrations and IGF1 SDS values of all children were within normal range. Only one child had lower normal serum IGF1 concentration. No alterations in exon 2 of IGF1R gene were detected.

CONCLUSIONS: The genetic analysis of the exon 2 of the IGF1R gene did not detect any gene defects in the analysed patients. The putative genetic defect in those children affects other parts of the IGF1R gene or another gene (s), or yet unidentified factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app