Add like
Add dislike
Add to saved papers

A Single-Cell Approach to the Elusive Latent Human Cytomegalovirus Transcriptome.

MBio 2018 June 13
Herpesvirus latency has been difficult to understand molecularly due to low levels of viral genomes and gene expression. In the case of the betaherpesvirus human cytomegalovirus (HCMV), this is further complicated by the heterogeneity inherent to hematopoietic subpopulations harboring genomes and, as a consequence, the various patterns of infection that simultaneously exist in a host, ranging from latent to lytic. Single-cell RNA sequencing (scRNA-seq) provides tremendous potential in measuring the gene expression profiles of heterogeneous cell populations for a wide range of applications, including in studies of cancer, immunology, and infectious disease. A recent study by Shnayder et al. (mBio 9:e00013-18, 2018, https://doi.org/10.1128/mBio.00013-18) utilized scRNA-seq to define transcriptomal characteristics of HCMV latency. They conclude that latency-associated gene expression is similar to the late lytic viral program but at lower levels of expression. The study highlights the numerous challenges, from the definition of latency to the analysis of scRNA-seq, that exist in defining a latent transcriptome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app