Add like
Add dislike
Add to saved papers

β-N-oxalyl-L-α,β-diaminopropionic acid induces wound healing by stabilizing HIF-1α and modulating associated protein expression.

Phytomedicine 2018 May 16
BACKGROUND: β-N-oxalyl-L-α,β-diaminopropionic acid (L-ODAP) is a non-protein amino acid with haemostatic property present in Lathyrus sativus. It is considered to be the causative agent of neurolathyrism that occurs upon prolonged overconsumption of Lathyrus sativus seeds. L-ODAP is used as a haemostatic drug in surgical dressings. We previously reported that it can stabilize hypoxia inducible factor (HIF)-1α in normoxic conditions.

HYPOTHESIS: We hypothesised that L-ODAP might affect wound healing by modulating cellular proliferation, migration and angiogenesis via HIF-1α stabilization.

STUDY DESIGN: We performed in vitro assays to evaluate wound healing activity of L-ODAP. Further, we prepared pharmaceutical gel containing L-ODAP and checked its effect on healing of full thickness excision wounds using Wistar albino rats.

METHODS: Effect of L-ODAP on HT1080 cell line proliferation, migration and invasion was investigated. Further, gel containing L-ODAP was applied on full thickness excision wounds of Wistar rats. Western blot and zymography were performed with wound tissue extracts obtained 2 days post-wounding and histological and immunohistochemical analysis with regenerated tissue obtained 10 days post-wounding. Evaluation was made based on wound contraction percentage, histological analysis and protein expression levels.

RESULTS: L-ODAP significantly (P < 0.05) affected wound healing both in vitro and in vivo. At non-toxic concentrations, it induced cell proliferation, migration, invasion and MMP-2 & -9 expressions. L-ODAP treated wounds healed faster than vehicle treated ones. Significantly higher expression level of HIF-1α, VEGF-A, PDGF-A and matrix metalloproteases were observed in L-ODAP treated wounds.

CONCLUSION: The present investigation explores potential of L-ODAP as a wound healing agent. L-ODAP positively affected wound healing both in vitro and in vivo and thus could be considered a natural wound healing agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app