Add like
Add dislike
Add to saved papers

Biological sex variation in bone mineral density in the cranium and femur.

OBJECTIVES: Sex and age trends in bone mineral density (BMD) play an important role in the estimation of age-at-death (AAD) of unidentified human remains. Current methodologies lack the ability to precisely estimate age in older individuals. In this study, BMD of the cranium and femur measured by DXA were examined to establish their applicability for age estimation in older adults. BMD as measured by DXA, is most commonly used clinically for prediction of osteoporotic fracture risk. We hypothesized that weight-bearing and non-weight-bearing bones, the femur and cranium, respectively, would provide valuable insights for aging.

METHODS: The sample consists of 32 sets of excised cranial fragments from the Regional Forensic Center, Johnson City, Tennessee and 41 associated crania and femora from the North Carolina Office of the Chief Medical Examiner. All crania and femora were scanned using a Hologic (R) DXA scanner and data were analyzed using Student t-tests, Loess regression, and ANOVA.

RESULTS: Student t-tests indicate a significant relationship between the sexes and cranial BMD and a significant relationship between age cohorts and femoral neck BMD. The Loess regression showed different aging patterns in the cranium for females and males older than 55. And the ANOVA showed changes in femoral neck after age 55.

CONCLUSIONS: These results indicate age and sex dependent changes in BMD especially for individuals over the age of 55, which offers improvement from current aging methods for older individuals. Further research using a larger sample size could improve the predictive capabilities of the model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app