Add like
Add dislike
Add to saved papers

Kinematics-based prediction of trunk muscle activity in response to multi-directional perturbations during sitting.

Recent work suggests that functional electrical stimulation can be used to enhance dynamic trunk stability following spinal cord injury. In this context, knowledge of the relation between trunk kinematics and muscle activation in non-disabled individuals may assist in developing kinematics-based neuroprostheses. Our objective was therefore to predict the activation profiles of the major trunk muscles from trunk kinematics following multi-directional perturbations during sitting. Trunk motion and electromyograms (EMG) from ten major trunk muscles were acquired in twelve non-disabled, seated individuals who experienced a force of approximately 200 N applied to the trunk in eight horizontal directions. A linear, time-invariant model with feedback gains on angular trunk displacement, velocity, and acceleration was optimized to predict the EMG from trunk kinematics. For each muscle, only the three directions that produced the largest EMG response were considered. Our results indicate that the time course of the processed EMG was similar across muscles and directions and that the model accounted for 68-92% of the EMG variance. A combination of neural and biomechanical mechanisms associated with trunk control can explain the obtained model parameters. Future work will apply the gained insights in the design of movement-controlled neuroprostheses for facilitating trunk stability following spinal cord injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app