Add like
Add dislike
Add to saved papers

Epsilon toxin from Clostridium perfringens induces cytotoxicity in FRT thyroid epithelial cells.

Anaerobe 2018 May 29
Epsilon toxin (Etx) is produced by Clostridium perfringens and induces enterotoxemia in ruminants. Etx crosses the blood-brain barrier, binds to myelin structures, and kills oligodendrocytes, inducing central nervous system demyelination. In addition, Etx has a cytotoxic effect on distal and collecting kidney tubules. There are few cell lines sensitive to Etx. At present, the most sensitive in vitro model for Etx is the Madin-Darby canine kidney (MDCK) cell line, where Etx oligomerizes and forms a pore with consequent ion efflux and cell death. Although the Etx receptor has not yet been fully clarified, it is known that caveolin 1 and 2 potentiate Etx cytotoxicity and oligomerization, and more recently, the myelin and lymphocyte (MAL) protein has been implicated in Etx binding and activity. Here, we studied the effect of Etx on Fischer rat thyroid cells (FRT) and observed similar effects as those seen in MDCK cells. Etx incubated with FRT cells showed binding to the plasma membrane, and western blotting assays revealed oligomeric complex formation. Moreover, cytotoxic assays on FRT cells after Etx incubation indicated cell death at a similar level as in MDCK cells. In addition, a luminescent ATP detection assay revealed ATP depletion in FRT cells after Etx exposure. Previous studies have reported that FRT cells do not express caveolins and do not form caveolae but express MAL protein in glycolipid-enriched membrane microdomains. Our results indicate that caveolins are not directly implicated in Etx cytotoxicity, supporting the notion that the MAL protein is involved in Etx action. In addition, a cell line of thyroid origin is described for the first time as a good model to study Etx action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app