Add like
Add dislike
Add to saved papers

Bright carbon dots via inner filter effect for the sensitive determination of the purine metabolic disorder in human fluids.

In this paper, the high performance fluorescent carbon dots were synthesized with maleic acid, tris and benzoic acid as raw materials by one-step hydrothermal method. The obtained carbon dots with uniform size emitted strong blue fluorescence, which the maximum excitation and emission wavelengths at 250 nm and 415 nm, respectively. Under the optimum condition, it was meaningfully founded that the reaction between the carbon dots and uric acid resulting in the fluorescence quenching of the carbon dots at the emission spectrum of 415 nm. The reason was that they had a synergistic effect between the fluorescence internal filtering effect and the static quenching effect. The fluorescence internal filter effect sensing system was constructed by using uric acid as the absorbable material and carbon dots as the luminophore. Hence, a fluorescence quenching method for the determination of uric acid was established in the concentration range from 5.0 to 400 μM with the detection limit (3σ/S) of 2.26 μM. Thus, a fluorescent sensing assay for the determination of uric acid was founded and confirmed in human fluids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app