Add like
Add dislike
Add to saved papers

Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the performance of different components influencing the photosynthetic machinery in Brassica juncea L.

BRs are polyhydroxylated sterol derivatives, classified as phytohormones. Plants of Brassica juncea var. Varuna were grown in pots and an aqueous solution (10-8  M) of two brassinosteroid isomers 28-homobrassinolide (HBL) and 24-epibrassinolide (EBL) of same concentration (10-8  M) was applied to their leaves. The treatment up-regulated the photosynthetic machinery directly by enhancing water splitting activity, photochemical quenching, non-photochemical quenching, maximum PSII efficiency, actual PSII efficiency, electron transport rate, stomatal movement, stomatal conductance, internal CO2 concentration, transpiration rate, net photosynthetic rate and carbohydrate synthesis. Moreover, the level of biochemical enzymes (carbonic anhydrase and nitrate reductase), reactive oxygen species (superoxide and hydrogen peroxide) generation, antioxidant enzyme activity and mineral status (C, N, Mg, P, S, K), which indirectly influence the rate of photosynthesis, also improved in the treated plants. Out of the two BR analogues tested, EBL excelled in its effects over HBL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app