Add like
Add dislike
Add to saved papers

Effect of ion partitioning on electrostatics of soft particles with volumetrically charged inner core coated with pH-regulated polyelectrolyte layer.

The effect of ion partitioning on the electrostatics of a soft particle with a volumetrically charged core and a pH-dependent polyelectrolyte layer (PEL) is numerically investigated. It is observed that, whenever the ion partitioning is noticeable, the soft layer can be fully charged in a broader range of pH. Besides, a higher number density of the PEL functional groups and a lower charge density of the core result in a sharper dependence of the electric potential on the electrolyte pH. Briefly, we conclude that, since the PEL charge is dependent upon the concentration of the hydroxide/hydrogen ions, for the pH-regulated soft particles, the ion partitioning effect, as a phenomenon influencing the ionic distribution, can be a determinant factor. So taking the effect of the ion partitioning into consideration is strongly recommended for a more realistic description of the electrostatics of the pH-regulated soft particles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app