Add like
Add dislike
Add to saved papers

Nuclear-Targeted Photothermal Therapy Prevents Cancer Recurrence with Near-Infrared Triggered Copper Sulfide Nanoparticles.

ACS Nano 2018 June 16
Clinical cancer treatments nowadays still face the challenge of recurrence due to the residual cancer cells and minute lesions in surgeries or chemotherapies. To effectively address the problem, we introduce a strategy for constructing cancer cell nuclear-targeted copper sulfide nanoparticles (NPs) with a significant photothermal effect to completely kill residual cancer cells and prevent local cancer recurrence. The NPs could directly target the tumor cells and further enter the nucleus by the surface modification of RGD and TAT peptides. Under the irradiation of 980 nm near-infrared laser, the NPs rapidly increase the temperature of the nucleus, destroy the genetic substances, and ultimately lead to an exhaustive apoptosis of the cancer cells. In vivo experiments show that the designed NPs could effectively treat cancer and prevent the return of cancer with a single laser irradiation for 5 min. The photothermal therapy strategy with nuclear targeting for cancer therapy and anti-recurrence will provide more possibilities to develop efficient platforms for treating cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app