Add like
Add dislike
Add to saved papers

Structural-Distortion-Driven Magnetic Transformation from Ferro- to Ferrimagnetic Iron Chains in B 6 -based Nb 6 FeIr 6 B 8 .

Angewandte Chemie 2018 August 7
We report on a structural distortion of kinetically stable B6 -based ferromagnetic Nb6 FeIr6 B8 that induces an unprecedented transformation of a ferromagnetic Fe chain into two ferrimagnetic Fe chains through superstructure formation. Density functional theory calculations showed that the ferromagnetic Fe-Fe intrachain interactions found in the undistorted structure become ferrimagnetic in the distorted superstructure, mainly because the two independent iron atoms building each chain interact antiferromagnetically and carry different magnetic moments. High-temperature SQUID magnetometry confirmed ferrimagnetic ordering at 525 K with a high and negative Weiss constant of -972 K indicating the presence of strong antiferromagnetic interactions, as predicted. This finding paves the way for the development of low-dimensional magnetic intermetallic systems based on Heisenberg ferrimagnetic chains, which have previously been studied only in molecular-based compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app