Add like
Add dislike
Add to saved papers

Development, preclinical evaluation and validation of a novel quick vascular closure device for transluminal, cardiac and radiological arterial catheterization.

Following percutaneous coronary intervention, vascular closure devices (VCDs) are increasingly used to reduce time to ambulation, enhance patient comfort, and reduce potential complications compared with traditional manual compression. Newer techniques include complicated, more or less automated suture devices, local application of pads or the use of metal clips and staples. These techniques often have the disadvantage of being time consuming, expensive or not efficient enough. The VCD failure rate in association with vascular complications of 2.0-9.5%, depending on the type of VCD, is still not acceptable. Therefore, the aim of this study is to develop a self-expanding quick vascular closure device (QVCD) made from a bioabsorbable elastic polymer that can be easily applied through the placed introducer sheath. Bioabsorbable block-co-polymers were synthesized and the chemical and mechanical degradation were determined by in vitro tests. The best fitting polymer was selected for further investigation and for microinjection moulding. After comprehensive haemocompatibility analyses in vitro, QVCDs were implanted in arterial vessels following arteriotomy for different time points in sheep to investigate the healing process. The in vivo tests proved that the new QVCD can be safely placed in the arteriotomy hole through the existing sheath instantly sealing the vessel. The degradation time of 14 days found in vitro was sufficient for vessel healing. After 4 weeks, the remaining QVCD material was covered by neointima. Overall, our experiments showed the safety and feasibility of applying this novel QVCD through an existing arterial sheath and hence encourage future work with larger calibers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app